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Preface

The recent spectral measurements of O. Lummer and E. Pringsheim1 and
even more striking those of H. Rubens and F. Kurlbaum2 , both confirming
more recent results obtained by H. Beckmann3 , would discover that the law
of the energy distribution in the normal spectrum first stated by W. Wien
from the molecular-kinetic consideration and later by me from the theory of
electromagnetic radiation is not universally correct.

In any case an improvement on the theory is needed and I shall further try
to carry through basing on the theory of electromagnetic radiation developed
by me. First of all there is necessary for it to find an alterable link in the
chain of reasons resulting in the Wien's energy distribution law. So one
handles to remove this link from the chain and create a suitable substitute.

The fact that the physical ground of the electromagnetic radiation theory
including the hypothesis of the "natural radiation", resists destructive criticism,
is shown in my recent work4 ; and since the calculations are known to be error
free, so the statement remains to be held that the energy distribution law
of the normal spectrum is totally defined if one succeeds in calculation of

10. Lummer, E. Pringsheim. Verhandl. Deutsch. Phys. Ges., 1900, 2, 163.
2H. Rubens, F. Kurlbaum. Sitzungsber. Akad. Wiss. Berlin, 1900, 929.
3H. Beckmann. Inaug-Dissert. Tiibingen, 1898, see also: H. Rubens. Wied. Ann., 1899,

69, 582.
4M. Planck. Ann. Phys., 1900, 1, 719.
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entropy S of irradiated monochromatic vibrating resonator as a function of
its vibrational energy. So then from the relation dS/dU == 1/{} one keeps the
temperature {} dependence on energy U, and since the energy U, on the other
hand, is simply related5 with a radiation density of appropriate number of
vibrations, so the temperature dependence on this radiation density is also
obtained. So the normal distribution of energy is one for which the radiation
densities of any different numbers of vibrations have the same temperature.

Thus the total problem is self reduced to that of definition S as a function
of U, and the essential part of the following research is devoted to the solution
of this problem. In the first my work on this problem I have entered S
directly by defining with no further substantiation, as the simple function of
U, and have limited by showing that such form for the entropy satisfies to
all requirements of the thermodynamics. Then I considered that it is alone
possible and therefore the Wien's law, from it flowing out, necessarily is the
universal one. In later, more particular research6 it seemed to me, however,
that it should be expressions, doing the same, and that in any case therefore
one more condition is needed for anyone being able to calculate S uniquely. It
seemed to me that I have found one such condition in the form of statement,
immediately then considered by me as plausible, that by the infinitesimal
irreversible alteration of the near thermal equilibrium being system of N
uniform, just in stationary radiation field placed resonators, the bound up
with it alteration of the total entropy SN == N S depends only on their total
energy UN == NU and their alteration but not on the energy U of particular
resonators. This statement leads again with necessity to the Wien's energy
distribution law. But now however the later is not confirmed by experience,
so the conclusion is forced that this statement in its universality also cannot
be right and so from the theory is to be removed7.

Therefore yet another condition should be entered which enables the
calculation of S, and for its realization the more detailed consideration of
the entropy concept is needed. The direction of these deliberate thoughts
is indicated by the consideration of the fragility of early made supposition.
The path is below described, in which the new simple expression for entropy
as well as the new formula for radiation are self found, both contradicting
no fact established till now.

5See below equation (8)
6M. Planck. Ann. Phys., 1900, 1, 730.
7 One compares besides the criticism, to which this statement is exposed yet: W. Wien.

Rapport fur den Pariser Congress, 1900, 2, 40; O. Lummer. Loc. cit., p. 92.
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I. The calculation of entropy of any resonator as a
function of its energy

§ 1

An entropy is conditioned by disorder, and this disorder in accordance
with electro-magnetic theory of radiation is based on monochromatic vibrations
of any resonator if although it remains in a stable stationary field of radiation,
on non-regularity by which it permanently changes its amplitude and its
phase, since one clocks time intervals which are long compared with a time
of vibration, but short compared with a measurement time. If the amplitude
and the phase both are absolutely constant as well as vibrations are quite
homogeneous, no entropy could exist and the vibrational energy should be
quite free convertible into the work. A constant energy U of alone stationary
vibrating resonator is therefore as an average by time to be perceived or
what turns to quite the same result, as a simultaneous average of energies
of large number N of uniform resonators, just into stationary radiation field
placed, sufficiently removed from one another to have no affect to each other
directly. In this sense in future we will speak about an average energy U of
a separate resonator. Then a total energy

(1)

of such system of N resonators is corresponded to certain total entropy

(2)

of the same system where an average entropy of any separate resonator is
represented by S, and this entropy SN is based on a disorder with which the
total energy UN is distributed among particular resonators.

§ 2

Now we suppose an entropy SN of a system with an arbitrary remaining
additive constant to be proportional to logarithm of the probability W with
which N resonators altogether possess an energy UN; therefore:

SN == k In W + canst.
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In my opinion this supposition originates from the base of the definition
of the probability W mentioned whereas in the premise, put on the ground of
the electromagnetic theory of radiation, we have not any support, enabling
to speak about such probability in a definite sense. For the expedience of so
aimed supposition its simplicity as well as its neighbourhood with that of
the kinetic theory of gases are standing for 8.

§ 3

Now it is worth reminding to find the probability W of N resonators
alltogether having a vibrational energy UN. It is necessary for it to imagine
UN not as a continuous unlimited divided value, but as a discrete one,
composed of integer number of finite equal parts. If we give a name energy
element E to such part, so one can suppose that

UN==P·E, (4)

where P is an integer, in general, large number, whereas the value for E is
till to be defined.

Now it is clear that the distribution P of energy elements among N
resonators can happen by some limited quite definite number of manners.
We give a name "complexion" to every such manner of distribution following
L. Boltzmann who had used this name for an expression with a similar
idea. Having numbered resonators by 1, 2, 3, ... , N, one writes them in a
row each to another and under each resonator places a number of energy
elements fallen to it in some arbitrary distribution, so for each complexion
one obtains a symbol of the following form:

1

7

2

38

3

11

4

o
5

9

6

2

7

20

8

4

9

4

10

5

Here N == 10, P == 100 are considered. The number R of all possible
complexions is obviously equal to one of all possible digital images which
can be obtained in this manner for the lower row with definite Nand P. For
intelligibility it should be mentioned that two complexions are considered
as different if corresponding digital images have the same numbers but in a
different order.

8L. Boltzmann. Sitzungsber d. k. Akad. d. Wissensch. zu Wien (I), 1877, 76, 428.
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Following combinatory, the number of all possible complexions is

R = N 0 (N + 1) 0 (N + 2) .0. (N + P - 1) = (N + P - I)!
1 · 2 · 3 ... P (N - I)! P! ·

Here is in a first approximation according to Stirling offer:

therefore in appropriate approximation

(N + p)N+P
R= NN opP ·

§ 4

The hypothesis, we now wish to put into the base of further calculation, is
as follows: the probability of that N resonators altogether possess vibrational
energy UN is proportional to the number R of all possible complexions with
energy UN distributed among N resonators, or by other words: each certain
complexion is as probable as either another one. It should in last line only
by experience be proved whether this hypothesis virtually hit into nature.
Instead however an opposite one should be possible: once an experience
should judge in its favor, the validity of hypothesis will result in the further
conclusions on the special nature of resonator's vibrations, namely on the
character of meanwhile appearing "indifferent and in their value compared
primary game spaces" by expression manner of J. v. Kriesg. In a modern state
of this question a further promotion of this idea should certainly appear as
premature.

§ 5

According to hypothesis introduced in relation with the equation (3),
the entropy of considered system of resonators with suitable definition of
additive constant is:

S N == k In R == k {(N + P) In (N + P) - N In N - P In P} , (5)

9 Joh. v. Kries. Die Principien der Wahrscheinlichkeitsrechnung. Freiburg, 1886, p. 36.
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and accepting (4) and (1):

SN = kN { ( 1+ ~) In (1+ ~) - ~ In ~}.

Therefore according to (2), entropy S of a resonator as a function of its
energy U is:

S=k{ (1+ ~)In(1+ ~) -~ In ~}. (6)

II. The deduction of the Wien's displacement law

§ 6

Following a Kirchhoff's law of proportionality of both emission- and
absorbability, discovered by W. Wien 10 and called by his name so-called
the displacement law, including, as a particular case, the law of Stefan
Boltzmann of full emittance dependence on temperature, builds the most
valuable constituent in the well grounded foundation of the theory of heat
radiation. In a fashion, given by M. Thiesen 11, it announces:

E · dA == {)5 1jJ(A{)) · dA,

where A is a wavelength, EdA is a volume density of a spectral slice between
A and A+ dA belonging to "black" radiation12, {) is a temperature and 1jJ (x)
is a known function of a single argument x.

§ 7

Now we are coming to investigate what Wien's displacement law says
about our resonator's entropy S dependence on its energy and its own
period, that is in those general case that resonator itself is in an arbitrary

lOW. Wien. Sitzungsber. Acad. Wissensch. Berlin, 1893, 55.
11M. Thiesen. Verhandl. Deutsch. Phys. Ges., 1900, 2, 66.
120ne should perhaps more conveniently speak about "white" radiation, whose proper

generalization is now understood as a "quite white light".
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as in following,

diathermal medium. For this aim first of all let us generalize the Thiesen's
form of the law on the radiation in an arbitrary diathermal medium with
the velocity of light propagation c. Since we have to consider not a total
radiation but monochromatic one, so when comparing different diathermal
media, the number of vibrations v should necessarily be introduced instead
of wavelength A.

Thus the volume density of a spectral slice between v and v + dv,
belonging to energy of radiation, is to be denoted as udv, so one should
write: udv instead of Edv, c/v instead of A and cdv/v2 instead of dA. This
results in:

u = 79
5·:2 ·1P ( c:) .

Now according to known Kirchhoff-Clausius's law, the energy, emitted
by black surface in a time unit into a diathermal medium, for defined
temperature {) and defined number of vibrations v is reverse proportional to
the square of the velocity of propagation c2

; thus the volume energy density
u is reverse proportional to c3 , and we obtain:

U = ~53 f ({)) ,
v c v

where constants of the function f do not depend on c.
Instead of it we could also write when f every time,

means a new function of a single argument:

v
3

({))u==-f -
c3 v

(7)

and by the way see that in a cube of a wavelength size a contained radiation
energy with a certain temperature as well as a number of vibrations is known
to be: UA3 , the same for all diathermal media.

§ 8

In order to pass from the volume density of radiation u to the energy U
of the resonator being in the radiation field and stationary vibrating with
the same number of vibrations v, we shall use the relation, published In
equation (34) of my work on non-reversible processes of radiation13 :

v 2

R==-·U
c2

13M. Planck. Ann. Phys., 1900, 1, 99.
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(R is the intensity of monochromatic line-polarized beam), which together
with the known equation

87fR
U== --

C

yields the relation:
87fv2

U == -3- U.
C

From here and (7) it follows:

where now c is not at all present. Instead of it we should also write:

§ 9

Finally introducing yet more the entropy of resonator B, we assign:

1 dB
1) dUe

Then it turns out:
dB = .!. f (U)
dU v v

and integrating, one obtains:

(8)

(9)

(10)

i.e. the entropy of resonator, vibrating in an arbitrary diathermal medium,
depends only on the single variable U / v and besides keeps only the universal
constants. This, as I know, is the simplest representation of the Wien's
displacement law.
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§ 10

Applying the Wien's displacement law in its latter representation to the
expression (6) for the entropy S, one can realize that the energy element c
should be proportional to the number of vibrations v, so:

and therefore:

Here hand k are the universal constants.
By substitution into (9) one obtains:

1 k ( hV)
{) = hv In 1 + U '

u= hv
hv

ek{) - 1

and the energy distribution law searched then follows from (8):

(11)

1
hv

ek{) - 1

(12)

or also if one with in § 7 shown substitutions instead of the number of
vibrations v introduces again the wavelength A, that is:

(13)

I suppose to show in the other place the expression for the intensity and
one for the entropy of the in diathermal medium propagating radiation as
well as the law of the increase of the total entropy in unstationary radiating
process.
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III. The numeral values

§ 11

The values of both natural constants hand k may be calculated well
precisely with a help of measurements available. F. Kurlbaum14 has found
that if one designates by St the total energy, radiating into an air in 1 sec
from the 1 cm2 surface of the black body exposed with to, then it is:

Watt 5 erg
S100 - So = 0.0731 cm2 = 7.31 · 10 -cm-2-.s-e-c.

From here the volume density of the total radiation energy in the air for
the absolute temperature of 1 turns out:

4 · 7.31 · 10
5 = 7.061 . 10-15 __e_r_g__

3 · 1010 · (3734 - 2734 ) cm2 · grad4 ·

From the other hand, according to (12), the volume density of the total
radiation energy for {) == 1 is as follows:

81rh Joo (hV 2hv 3hv )v 3 e- T + e- T + e- T +... dv
c3

a

and by all terms integration it yields:

81rh (k) 4 ( 1 1 1 ) 481rk
4

U =~ · 6 h 1 + 24 + 34 + 44 + ·.. = c3h3 · 1.0823.

Assuming it to be equal to 7.061 · 10-15 , one obtains, since c == 3 · 1010,

k
4

15
h3 = 1.1682 · 10 ·

14F. Kurlbaum. Wied. Ann., 1898, 65, 759.
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§ 12

o. Lummer and E. Pringsheim15 have determined the product Am {}, where
Am is the wavelength of the maximum of E in the air for the temperature
{}, having value up to 2940 JL·grad.

So in absolute units that is

Am {} == 0.294 cm · grad.

From the other hand, if one assumes the partial derivative of E in respect
to A to be equal to zero, so that A == Am, then it follows from (13):

and from this transcendental equation one obtains:

A {) = ch .
m 4.9651 · k

Therefore:
h 4.9651 · 0.294 -11

k
== 10 == 4.866 · 10 ·

3· 10

From here and from (14) the values for the universal constants turn out:

h == 6.55 · 10-27 erg · sec,

k == 1.346 · 10-16 erg/grad.

(15)

(16)

These are just the same values that I have presented In my recent
communication.

15 0. Lummer, E. Pringsheim. Verhandl. Deutsch. Phys. Ges., 1900, 2, 176.
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